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We study those nonlinear infinitesimal realizations of SL(2, C) that leave 
invariant the quadratic function .t,.t~, of the four-velocity components of a 
particle. These transformations are defined as maps of a larger manifold, which 
includes the four-velocity space, into itself in such a way that transformations of 
the .t~, depend upon other functions in the manifold. The requirement that .i~,.t~ 
remain invariant limits the types of other functions that can contribute in the 
transformation of the 5:~. However, among those allowed are the spinors and a 
three-dimensional space that transforms nonlinearly and recently associated with 
electric charge. We point out and explore two interesting aspects of these 
nonlinear realizations. First, they generally necessitate interactions since .2g = 0 is 
not a covariant equation. Second, with superposition of solutions, exact measure- 
ment of the four-velocity or space-time position, is impossible. This and related 
features of nondeterministic measurement inherent to these realizations are 
discussed. 

1. INTRODUCTION 

The invariant metric form 

where .t#-= dx~/ds with "~4 = ic(dt/ds), seems to characterize rather well 
our physical space-time. Over local regions, the approximations g~'" --- 6~,, is 
consistent with a broad spectrum of observations, so that the local geometry 
may be characterized by the invariant form 
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This form remains invariant under the usual linear realization of the 
six-parameter Lorentz group. In these transformations, the four-velocity 
manifold V 4, is mapped into itself. 

The purpose of this paper is to describe certain nonlinear realizations 
of the Lorentz group [actually we consider SL(2, C), the two fold covering 
group] which leave 5:w~~, invariant. These transformations are defined as a 
map of a larger manifold, which includes V 4, into itself in such a way that 
the transformations on the 5:~, have a nontrivial dependence on other 
functions in the manifold. That such realizations exist for the Lorentz group 
is not surprising since similar nonlinear realizations are well known for 
other groupsfl 

After considering in Section 2 the general expressions for the commuta- 
tor equations for these realizations, we discuss the form of these equations 
for the special cases in which we have (a) superposition of solutions, and (b) 
realizations that reduce to the linear case in some limit. In this class are 
realizations for which the nonlinearity (deviation from linear realizations) is 
characterized by product terms of the form +,q~j where both +, and q~/ are 
components from two separate six-dimensional spaces. The 0j transform 
like the components of the electromagnetic field. On the other hand the ~b / 
cannot transform in this way. The equations which the +j must satisfy 
restrict the way they can transform. 

In Section 3 we study in detail two very different basic realizations. In 
one case the q~j are related directly to a four-component spinor. In the 
second, the ~j transform with a particular nonlinear pattern that cannot be 
linearized; and recently associated via minimal coupling with electric charge 
(Dalton, 1982a, 1982b). In addition to these two basic solutions we briefly 
consider a coupled solution involving them. 

Because the nonlinear transformations have a local space-time depen- 
dence, zero acceleration equations of the form .~, = 0, are generally not 
covariant. On the other hand, we show (in Section 4) that equations with the 
well-known Lorentz force form .~ = F~,,,5:,,.are covariant under the nonlin- 
ear transformations. Thus, an important characteristic of these realizations 
is that they necessitate accelerations or interactions (Dalton, 1980a, b). In 
the limit that the nonlinearity vanishes and the transformations reduce to 
linear ones, those interactions can vanish. 

Under these nonlinear transformations a vector 5: in V 4 is transformed 
into a vector 5:' which differs from a vector that would be obtained from 5: 
if one assumed the usual linear transformation. From this one can see that a 
submanifold in V 4 with points connected by a nonlinear realization will 

2See, for instance, Weinberg (1968). In this study chirality transformations on the nucleon field 
have a dependence on the pion field. 
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generally differ from a submanifold in V 4 with points connected by a linear 
realization even though ~t~,.r is left invariant in both cases. In Section 4 we 
discuss this point and the idea that in macroscopic averages over many 
particles, the nonlinearity could average to zero. This raises a serious 
question in general. How can one use any macroscopic experimental ap- 
paratus which transforms linearly to make deterministic measurements of 
quantities that transform nonlinearly? The conclusion in this paper is that 
you cannot make covariant deterministic measurements of quantities that 
transform nonlinearly using experimental apparatus that transforms lin- 
early. 

Another problem of measurement also arises in this theory. Assuming 
superposition of solutions, for the ~pj, deviation from linear realizations will 
depend upon contributions from all spinor and other fields in a region. In 
this case, the field of a probe particle will change the transformation 
properties of a particle one wishes to detect. 

2. INFINITESIMAL TRANSFORMATIONS AND 
COMMUTATOR RELATIONS 

In this section we consider linear and nonlinear infinitesimal transfor- 
mations of the group G = SL(2, C), the twofold covering group of the 
Lorentz group, as it acts simultaneously on the four-velocity components 2~, 
and other functions of physical interest. We describe the general commuta- 
tor relations and recall some properties of linear transformations for con- 
trast with the nonlinear ones. We also describe the restrictions imposed by 
the commutator  relations in order to have superposition of solutions, as well 
as a general class of solutions that contain the linear case as a limit. 
Discussion of explicit solutions are relegated to Section 3. 

We first consider here some notation convenient for the sequel. The 
symbols a, /3, ~, will represent sets of six group parameters, that is, 
a =  {a, l i = l  . . . . .  6}. If e is a typical variable in the manifold on which the 
group acts, then for an infinitesimal transformation corresponding to ele- 
ment g(a)  ~ G we use the following notation: 

g ( a ) :  e~e'=F(a,(e})  

ar(/~, (~}) a= 
= e + a, 0/3, o 

= e+  c~,(6,e) (1) 

Here, we have used {e} to represent the set of all variables including e on 
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which G simultaneously acts. We also use the convention unless specified 
otherwise, of summing from one to six over repeated Latin indices (these 
indices indicate the six group parameters). In the second line of (1) we have 
made a Taylor expansion (for small eq) and used F(0, { e})= e. In the third 
line we used the expression (rje) which we in general define as follows: 

(6ie)= " OF(/3,{e})O/3, /~=0 (2) 

The use of the parenthesis in (6ie) helps avoid confusion in the composite 
expression discussed below. 

Using the above notation we now discuss the basic commutator equa- 
tions. If we evaluate the infinitesimal transformation corresponding to the 
product g(a)g(/3)g(a-l)g(~8 -1) and impose closure we arrive at the fol- 
lowing general commutator relation (for a derivation see Appendix A of 
Dalton, 1982a): 

( 8 , ( 8 j ~ ) ) - ( ~ j ( ~ , ~ ) )  = c , . j , (a ,~)  (3) 

In this equation the C,j k = -  ~,k are the group structure constants (these 
constants must satisfy the Jacobi identities which are coupled algebraic 
equations imposed by the associative nature of the group product). With 
both i and j ranging over the six group parameters, (3) represents a system 
of 15 equations which the transformations in (1), whether linear or nonlin- 
ear, must satisfy. 

Before considering nonlinear transformations we recall for contrast 
some features of the more familiar linear transformations of G on the 
four-velocities .t,. For these we have 

.t~ = 2.. + a i (8 ,2 . )  (4) 

where 

(8 ,2 . )  = - s p , p  (5) 

(sjs~p) = 0 (6) 

If we put (5) with (6) into (3), we get the following commutator relations 
(expressed in matrix form): 

[s, ,  g.] -= s , s ,  - s , s ,  = c, . j ,s ,  (7) 
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The matrix elements in (5) are further restricted by the imposition that .t#.t~, 
remains invariant under the transformation (4). Explicitly we impose 
(Si(.t~,.t~)) = 0, which means 

(6, (2t,2~,)) = 2.t~, (6,2~,) 

= 0  (8) 

This expression is true provided 

S] '~ = - S f  ~' (9) 

With regard to the nonlinear transformations discussed below there are 
some related points of interest in the above linear transformations. First, (6) 
is not necessary in order for (8) to be valid. Second, the conventional 
commutator relations in (7) are not valid unless (6) holds. 

We now turn our discussion to some nonlinear infinitesimal realiza- 
tions of G for which 2t,2 # is left invariant. We still consider transformations 
which have the form given in (5), that is, 

(~,'xl,) = - Mr~ (10) 

but in this case we do not impose a condition like (6) on the M~ p. Now 
since (SiM~ p) ~ 0 we see from the relation 

i~ = i~ - a, iit'~ (11 ) 

- t  that x~, is at least a quadratic function of variables on which G acts. The 
matrix elements M~ ~ in (11) may depend on any of the variables in {e} 
including the .t~,. In the case where (6 iMp~ the transformation in 
equation (11) reduces to the linear case discussed above. If we put (10) into 
the general commutator equation (3) we arrive at the following expression 
(written in matrix form): 

( 8iM j ) - (  8jM i )+ [ M i, Mj] = Ci)kM k (12) 

From this expression we can see that we get a relation like (7) for the M,. if 
and only if (6iMj) = 0 for all i and j. 

Now if we impose the condition that (11) leave invariant the form .t~,.t~, 
we can follow the steps given in (8) to arrive at the condition 

M r "  = - Mp.  (a3) 
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for elements of all six matrices M,. With (13) each M~ has only six 
independent elements. As a consequence, one may use the six S, discussed 
above in the linear case to write the 34, in the following expanded form: 

M, = - ~'uS; (14) 

The 36 one-dimensional functions ~'u (i.  j = l  . . . . .  6) in (14) may be func- 
tions of any variable (even the .i'~,) on which the group acts. 

If we insert (14) into (11) using a Lie Algebra basis with real parame- 
ters ~. and require that the 2, (24) remain real (pure imaginary) under this 
transformation, then we must impose the condition 

~'u = ~',~ (15 )  

where * means complex conjugate. We will return later to the implications 
of this restriction for particular solutions. 

Using (14) in (12) leads after some algebra to the following equation 
for the 36 ~',~: 

( 6,•, ) - ( 6,;  a ) - f, kS, ,Ck, ,a = CUk;h, (16) 

As pointed out in Dalton (1980a), solutions of this particular set of 
equations have been studied previously for both internal and external 
(space-time) symmetry groups. Perhaps the most widely known study of 
realizations like these is the SU(2)• SU(2) chirality realization in which the 
~'u for that group were functions of pion fields (Weinberg, 1968). 

Given two solutions E,j and ~,j of (16) we now look at the conditions 
for which the superposition of these two solutions is also a solution. Putting 

~',j = e u + ~,j (17) 

into (16) leads to the following algebraic relation: 

( + = 0 (18) 

Equation (18) represents algebraic relations between the e,k and ~,k which 
must be satisfied in order for their sum to be a solution. In (Dalton, 1980a) 
several different solutions of (16) were described, among which there were 
pairs of solutions which satisfied the superposition condition (18). We note 
here that there may be compositions of solutions other than (17), such as 
products, which also satisfy (16), but discussion of these is outside the scope 
of this article. 
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One solution of (16) is ~',j = - 8,j for which the realizations reduce to 
the linear ones. If solutions are to have the linear case as a limit, then the 
expression for ~'q should have the factor 8 o in one term. The other special 
solution of (15) is the null solution ~'u = 0. 

We now look at the general class of solutions of (16) which has the 
linear limit - 6  o as one term. For these solutions we write ~',j in the 
following form: 

~i j  "~ - -  8 i j  q'- "Oij (19) 

where it is understood that rl,/does not include a term like 8 u. Using (19) in 
(16) produces the following equation: 

( 8 ,71 j t ) -  ( 6 j ~ a ) +  ~/ , ,Ci .a  + ~T,t, Ckj ,  - 77ik~j,,Ck,a = Ci jk~, ,  (20) 

Equation (20) simplifies for those cases where the "0~k factorize as follows: 

rbk = +iePk (21) 

where 4'~ and ~k are functions whose transformation properties must satisfy 
(20) which we rearrange as follows: 

[( ],p, + + ] 

= o  {22) 

This equation is satisfied if we have the following separate relations. 

(23) 

(8 iqh)  = - Ci,,,tq~,, , (24) 

It is interesting to note that the particular set of equations in (23) was 
obtained in a recent study of diagonal nonlinear realizations. The local 
nature of these realizations necessitated the interaction of minimal coupling 
(Dalton. 1982a, b). 

3. SOLUTIONS 

In this section we discuss realizations of S L ( 2 ,  C )  which satisfy (23) 
and (24) above. In particular we consider a spinor solution of (23) as well as 
one nonlinear solution that recently has been associated with the Coulomb 
potential of a point charge. 
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We first consider (24). There are six functions q~i, which in the second 
Lie Algebra basis of the Appendix are indicated by three q~j+ and three q~j- 
(here j=1 ,2 ,3 ) .  In this basis (24) may be expressed as follows: 

( 3, +~?j+ ) = - eUkep k + (25) 

(3,-q~j-) = - eukq~ k- (26) 

(3,+q~j-) = O, (3,-q~j+) = 0 (27) 

If we use these expressions to evaluate the Casimir invariants (Al l )  and 
(A12), we find that q~j+ and ~/- transform respectively under the (1,0) and 
(0,1) representations of SL(2, C) (Dalton, 1980b). 

For the combinations q~j = (cbj + + q~j- ) /2  and q~j = - i(q,j + - q~j- ) /2  
we also consider equation (24) in the first Lie Algebra basis of the 
Appendix: 

( 3,dpj ) = - e,jkq~/. (28) 

(8,+j) = -- e,jkq, k (29) 

= - ( 3 0 )  

= + (31) 

From these equations we can see that if q~j and ~/are real, their transformed 
values will also be real. We will recall this point below where we discuss the 
physical constraint (15). If q,j and ~j are real, then q~j- will be the complex 
conjugate of q,j+. This is the case for the electromagnetic field. In compari- 
son with the latter, the q~, above transform like components of the magnetic 
field B, and the q,, above transform like components of the electric field E. 

We now consider solutions of (23). Since there are six 4' one might at 
first glance expect the +i to transform under the (1,0) or (0,1) representa- 
tion (like the q~ above). However, as pointed out in Dalton (1982a) these 
realizations do not solve (23). This is because equation (23) represents 
conditions on the antisymmetric parts of (6fl9). To see this we write 
(8,49) = So/+ A u, where S u =  Sj, is the symmetric part of (3,4'j), and 
A u = - A j, is the antisymmetric part. Using this in (23) we find 

A u = �89 Cuk4' k (32) 

Thus provided (Sfl,,) is not zero (23) determines uniquely the antisymmetric 
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part of (6~4'j), with the 1 /2  factor as indicated in (32). By contrast, the 
expressions in (25) and (26) do not have a factor of 1 /2  as in (32). With (32) 
we can write (6?kj) as follows: 

( 6 ,~j)  = S u + C u k ~ k / 2  (33) 

The symmetric part of S u in (33) is not arbitrary, because the (6,q,j) must 
also satisfy the general commutator equation (3). 

For more detailed discussion we now consider (23) in the first basis of 
the Appendix: 

( 6,~b, ) -  ( 6j~, ) = - e,jk ~ k (34) 

( ~ , ~ J j ) - - ( ~ j t ~ J i )  = -- f.ijk~Jk (35) 

( 6 , @ ) -  (6j,~,) = + eUkqJ k (36) 

The reader is reminded that we have one function (4,k or ~k) for each group 
parameter. Through common indices the three +k are associated with the 
SU(2) subgroup parameters and the three ~k are associated with the three 
pure Lorentz boost. 

In order to satisfy (15) the three 4'j and three ~j must be real, 
assuming that the six q~k were chosen real. [Pure imaginary Ok, 4'j, and ~j 
would also satisfy (15)]. 

The factor of 1 /2  in (33) and the requirement that the 4'j and ~j be 
real are nontrivial constraints on these realizations. One solution has been 
given in Dalton (1982a), and because of its interesting connection with the 
Coulomb potential of a point charge we briefly recall its properties here. 
For this realization we have 4'j = 0 and 

(6;J/j) = + ~6;j �9 ,~;,~//,~ (37) 

where j/2 = ~i '~ is an invariant in this particular realization. This particular 
pattern of nonlinear transformation has been reviewed by Philip and 
Wigner (1968) for the de Sitter group. If X, and Y,, indicate the position of 
coordinates of a field and source point in Minkowski space with r,, = X~, - Y, 
then the expression 

~, = F ( r ) r ,  (38) 

will satisfy (37) if and only if rut,,--0 and F = q / r  where q is some 
constant. The two signs in (37) correspond to the retarded and advanced 
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signals from the source to the field point. In the classification scheme 
discussed in the appendix, J/j transforms as a (0,0) realization. The zero 
values for j] and J2 are due to the particular nonlinear nature of the 
transformation. In Dalton (1982a), q was associated with the constant in 
the minimal coupling potential A, (for the transverse gauge A 4 = 2q / r ) .  
This minimal coupling interaction was generated by a local nonlinear 
transformation on the wavefunction. 

We now consider spinor solutions [that is, (1/2,0)  and (0,1/2)  linear 
realizations] of (23). To satisfy the condition (15) with real q,j we consider q'i 
and ~j which are related to the real and imaginary parts of functions q~ as 
follows: 

4'j = ( q., + q7 ) / 2  (39) 

~, = - i (  q , -  q7 ) / 2  (40) 

where * indicates complex conjugation. By construction, +j and ~5 are real. 
If we use these expressions in (34)-(36) we arrive at the following relations: 

( 6, + qj )-- ( 6j + q, ) = -- e,jkq k (41) 

(8 , -q j* ) - - (6 j -q i* )=- -eukqk*  (42) 

(6 ,+q j* ) - (6 j -q , )  = 0  (43) 

These equations as well as the general commutator equations can be 
satisfied if qj and q7 transform under a (1/2,0)  and (0,1/2)  representa- 
tions of SL(2, C). Such realizations have been discussed in Dalton (1980b). 
From there we have the following explicit expression for the (1/2,0)  
representation: 

(6,qj) = [ +  q48,,-%,qk]/2 (44) 

(8,q,) = 0 (45) 

Here, q4---( D 2 -  q,q,)l/2 where D is an SL(2,  C) invariant. The function 
q4 transforms as follows: 

(6,+q4) = - q , /2  (46) 
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Using (44) and (46) we can easily evaluate the Casimir invariants. We have 

-(6f(8,+q,,))=~q,, 

=�89 + l )q , ,  (47) 

- ( 3 , -  (6,-q,,)) = 0 (48) 

where q,, represents q~ through q4. Likewise for the (0,1/2) representation 
we have 

(6,*qs *) = 0 (49) 

(6i-q,*) = [+  q4"8i1- eukqk*]/2 (50) 

The (1/2,0) and (0,1/2) representations are the basic spinor building 
blocks. In the above realizations there is however an additional feature. The 
qj and q j* have the same indices as the generators of the group. 

We now give a relationship between the qj and qj* and an arbitrary 
four component spinor. In the Pauli metric notation that we are using the 
Dirac matrices 7. satisfy 

~y~ + ~ , ,  = 2~.~ (51) 

Consider a four-component spinor X which transforms as follows: 

( 8 , •  = - 4 x  = - ( ~ , j , ' ~ , ~ , )  x (52) 

(~,X) = - K,X=-( -2747 , )  X (53) 

Here Ji and K, are matrices defined in the second equations of (28) and 
(29). With (51) one can show that these matrices satisfy the commutation 
relations for the Lie algebra in the first basis of the Appendix. 

In the second basis for the Lie algebra we have 

(8,• X) = - T,.-+X = - �89 + iK,) X (54) 
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where ~. 
can write 

Using (51) with ~ and K, as defined in (52) and (53) we have 

... 75-'1 
( 8 , •  = , , , , - y - x  

-- + iK, P +- X 

= J , e  • X (55) 

where ~'s = 7172Y3Y4, and P • = (1 + 75) /2  are the usual projection operators 
with ( P •  + and P + P - = 0 .  

Let ?~u, u = 1 - 4  be arbitrary complex SL(2 ,  C)  scalars [that is, (6,~.,,) 
= 0, i =  1 . . . . .  6], and consider the following functions: 

q, = a,, (T~ + )"~ = )~rT,+ X (56) 

q4 = XrP+ X/2  (57) 

is a column matrix with components ~,, and T -= transpose. We 

( U q , )  = + ( 8 , x )  = - + 7;,+ x 

= - x 6 p+x (58)  

If we use the definitions of ~ in (52) with (51) we can show that the 
expression for (8,+qj) in (58) is equal to the expression given in (44). Using 
the property P + P -  = 0 we can also show that (45) holds. Likewise, we have 
the relations 

(8,+q4) = Xrp + (8,+ X ) / 2  = U p  + ( -  T,+ X ) / 2  

= - arT, + X / 2  = - q J 2  (59) 

so that (46) is satisfied. Because of the parameter relation (a, + )* = a , -  we 
have in general the following relations: 

(8,-q,,*) = (8,+q,,) * (60) 

so that if q,, transforms under a (1/2 ,0)  representation then qu* transforms 
under a (0 ,1/2)  representation. 

In the above we have show that spinor solutions of (23) can be found 
which satisfy the real condition (15). We have also shown that these spinor 
solutions can be expressed in turns of an arbitrary four-component complex 
spinor via (56) and (57). 

With this spinor solution the transformed velocity components .~[, are 
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now functions of a complex spinor X, the functions 4'~ and components ~:,,. 
If either the spinor X, or the six functions q~ vanish then the transforma- 
tions on the .t u reduce to the usual linear ones. The fact that the geometric 
quantity .t , . t ,  remains invariant under transformations which mix the 5% 
with spinor components is of physical interest, especially in light of the fact 
that a variety of elementary particles are spinors. 

In Dalton (1982a) it was shown that a spinor realization extended to 
include a nonlinear component generated the interaction of minimal cou- 
pling. The potential components A,, were related to solutions of equations 
identical to (41) and (43) for six functions [indicated here by fi and f, (or f+ 
and f -  ) to avoid conflict in notation]. We now consider the solution of (41) 
which involves these extended realizations. For this we consider the follow- 
ing form: 

qj=)~r[fi+l+Tj+]X (61) 

where 1 is the 4 •  unit matrix, the T, -+ are given in (54) and X is a 
four-component column matrix. Using (61) in (41) we obtain the following 
relations: 

1+ ](aF x)-Z[f,+l + E+ ](aj+ x)= (62) 

To reduce to (62) we have used the above assumption that the fj+ satisfy 
(41)-(43). The only unknown in (62) is (Si + X). Equation (62) is satisfied if 
(6,+X) is given by 

(a,+ x )  = - ( f , l  + r, + )x  (63) 

Equation (63) is just the extended realization studies in Dalton (1982a). This 
result is interesting because it shows consistency between the nonlinear 
geometric transformations studied here and the nonlinear transformations 
of Dalton (1982a) which were related there to the minimal coupling interac- 
tion. 

4. COVARIANT FORCE EQUATIONS 

In this section we give a brief discussion of those acceleration equations 
that are covariant under these nonlinear realizations. To begin, consider the 
following equation: 

d.t~ = 0 (64) 
Yc~= ds 
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Under an infinitesimal nonlinear transformation we have 

d . i  d 
= ( x . )  = 

= - M ? ' %  + M , . %  ) 

Using (64) we see that 

(65) 

Y:~ = a ,M~~  (66) 

which for arbitrary 2 o is zero if and only if M~ '~ is constant along the world 
line of the particle. For the nonlinear realizations Mff p will depend on the 
fields that cause the nonlinearity in the transformation of the 5:~,. There is 
no reason to expect in general that these should be constant along the world 
line of the particle so that 2~, = 0 is not in general a covariant equation. If 
the nonlinearity in the transformation of the 2~, is either zero, or constant 
along the world line of the particle then the zero acceleration condition 
2~, = 0 is covariant. This is why we have emphasized in Sections 2 and 3 
those realizations which can possibly reduce to linear realizations in some 
limit. These solutions can represent particles which can be free (.~-, = 0) in 
some limit. We point out however that there exist solutions of (12) for which 
the realizations cannot reduce to the linear case in any limit. Examples of 
this type have been published elsewhere (Dalton, 1980a). The possibility 
that such solutions could represent confined particles such as quarks is 
especially interesting, but outside the scope of this paper. 

To find equations involving 2~, that are covariant, we construct a 
covariant acceleration A as follows: 

A = 2 - F.t (67) 

In this expression 2, 2, and A are column matrices with four components 
each, and F is a four-by-four matrix. We require A to transform like 2. If 
for group parameter a we have 

2 ' =  N 2  (68) 

then A transforms as follows: 

A ' =  N A  = N ( 2 -  F 2 )  

Using the form (67) for A' also, we have 

(69) 

d ( N 2  ) -  F ' N 2  = N 2  - N F 2  
ds 

(70) 
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From this equation we get the following expected relation: 

dU u - I  (71) F ' =  NFN -1 + 

Equation (71) described the transformation of the connection matrix F. 
Although it is the same in form as that for guage transformations of the 

second kind, there is an important difference. In (71) the dependence on the 
world line arises through the dependence of N on the fields causing 
the nonlinearity. By contrast, for a gauge group, the dependence of N on the 
world line would arise through the group parameters. 

With (71) and (69) we can see that the equation A = 0 implies that 
A '=  0 so that the equation 

i~ = F~P.~p (72) 

is a covariant equation. This equation has the form of the traditional 
acceleration equation of electrodynamics. It is interesting to notice that 
equation (72) is invariant under both linear and nonlinear realizations of the 
space-type symmetry group. The equations 

F~o = 0, .~, = 0 

are not covariant unless the nonlinearity vanishes. For this reason we see 
that the nonlinearity in the transformation necessitates nonzero interactions. 
This does not say however that forces necessitate nonlinearity because, as 
mentioned above, (72) is also covariant under linear transformations. We 
can only say that nonlinearity of t"he type considered here gives a reason for, 
and in fact necessitates forces. 

The fact that the traditional force equations of electrodynamics are 
covariant under these nonlinear transformations would seem to suggest that 
the nonlinearity in these realizations is associated with electrodynamics. 
This may indeed be the case for some solutions but the variety of type of 
solutions indicated in Section 3 makes it unlikely that all of these realiza- 
tions are associated with electrodynamics as traditionally recognized. For 
instance, as we mentioned in Section 3, one special nonlinear transforming 
solution has already been associated with electric charge. This leaves open 
the question as to the physical interpretation of the spinor, as well as other 
solutions. 

5. COVARIANCE AND MEASUREMENT 

All physical measurements, by nature, involve interactions of particles. 
With the idea that different types of particles are associated with different 
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nonlinear realizations of the space-time symmetry group, we must readdress 
measurement and the impact of this idea on it. 

Extensions to nonlinear transformations of the type considered in this 
paper affect measurements in two ways, and we briefly discuss them in turn. 
First, suppose we let seT(s)= (• 22, 23, 24), ( T =  transpose) represent the 
four-velocity of a particle at point s on the world line of the particle. Under 
a nonlinear transformation with group parameter a we have 

2 ' (s )  = U o ( x ( s ) ) 2 ( s )  (73) 

Here, the matrix N,(x(s)) generally depends on the position of the particle 
through the spinor or other fields that characterize the particle. The four- 
velocity 2"(s)  obtained from k(s)  by the linear transformation 

2"(s) = L.2(s)  (74) 

coincides with 2'(s)  given in (73) only when N,, reduces to L~. Recall from 
Section 4 that this could represent the free particle limit. 

We have a similar situation with the space-time trajectory of the 
particle. Suppose we integrate (72) to obtain the space-time vector x(s), 
where x(s) "r= (XI, X2, X3, X4) , a s  a function of s. Now (72) is covariant 
under both nonlinear and linear transformations. Suppose we integrate (72) 
after we make a nonlinear transformation with group parameter a. We 
obtain solutions x'(s) along the world line. If on the other hand we first 
make a linear transformation and then integrate (72) we find that we obtain 
solutions x"(s) which coincide with x'(s) only when the nonlinearity 
vanishes. For instance, if the spinors, or other functions, causing the 
nonlinearity are oscillatory functions, the points x'(s) and x"(s) will 
coincide on a periodic basis. Now both x' and x" are in R 4. The fact that 
they are not identical is simply the fact that submanifolds of R 4 (or V 4) 
connected by different realizations, for the same group parameters, do not 
coincide. 

On the macroscopic level we know that the assumption of linear 
transformations is a good one. This does not mean however that we must 
have linearity on the microscopic level. If we do have nonlinearity realized 
on the microscopic level then it must average to zero for materials of 
macroscopic dimensions. One is reminded here of the domains of quantum 
and classical mechanics and correspondence between the two. There is much 
more to this similarity. One may notice that spinors solutions are obtained 
in these nonlinear realizations and spinors also play a key role in quantum 
theory of elementary particles. With macroscopic experimental apparatus, 
both covariant and deterministic measurements of trajectories of particles 
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whose four-velocity transforms nonlinearly are impossible. This is because 
exact measurements in one frame will disagree in another since the macro- 
scopic apparatus transforms linearly. 

In addition to the above situation, there is a second measurement 
feature of equal interest. If we have two solutions of (23) then their 
superposition is also a solution. With this, the nonlinearity in the realiza- 
tions for a given particle could depend upon all of the fields in the 
neighborhood. If this is the case, one would expect that the nonlinearity to 
have a larger effect for interacting particles. However, if superposition does 
hold, the field of a probe particle will affect the nonlinearity of the particle 
one wishes to detect. This would make it impossible to exactly measure the 
velocities and positions of a particle since the very act of measurement 
changes the way they transform. Again we are reminded of a well-known 
measurement problem of quantum mechanics. 

In conclusion we notice that both Lorentz forces and spinors play a 
fundamental role in physics. If we limit our theories to include only linear 
transformations we must include these as additional input. However, if we 
include those nonlinear realizations that leave .~.t~, invariant we involve the 
Lorentz forces as well as spinors in a natural way. In addition, the 
interesting measurement aspects that arise when one includes the nonlinear 
transformations have an uncanny similarity to measurement aspects of 
quantum theory. If these nonlinear realizations are indeed "realized" in 
nature, the idea that the nature of matter is essentially geometric will have 
much support. 

APPENDIX: LIE ALGEBRA BASIS 

For use in the present and future papers we briefly review here in our 
notation the commutation relations of the Lie algebra for SL(2, C) in two 
convenient bases. 

In the first basis we use three real parameters ~o, ( i = 1 - 3 )  for the 
SU(2) subgroup and the three real parameters u, ( i = 1 , 2 , 3 )  for the pure 
Lorentz boost. The infinitesimal transformation on an arbitrary variable e is 
given as follows: 

+ + (A1) 

where the sum on i is from 1 to 3. 
As in Dalton (1980b) we have chosen to absorb the usual factor of 

( - 1 )  1/2 into the (8,E) and (~ie). The expressions (Sie) and (8,e) are defined 
by (2) where the derivatives are with respect to the real parameters ~0 i and 
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v i, respectively. With this basis the commutator relations are expressed as 
follows: 

( 8 i ( 8 j e ) ) - ( S j ( 8 , e ) )  = - e,j k ( 8ke ) (A2) 

(8, (3 ,e ) ) - (  3j(8,e)) = - e,,k(3,e ) (A3) 

( ~ , ( ~ , ~ ) ) -  (~ , (a ,~ ) )  = - ~ , , , (~ ,~ )  ( , 4 )  

where Eijk is the total antisymmetric tensor in three indices with e~23 = + 1. 
To compare with and take advantage of previous classifications of 

realizations of SL(2, C) we consider the following basis: 

(8,+ e ) -  [ ( 8 , ~ ) + i ( 3 , ~ ) ] / 2  (A5) 

( 3,- ~) = [( 8ie ) - i (  3 i e ) ] / 2  (A6) 

We have the inverse relations 

( 3 , e )  = (3,+ e ) + ( S i - e )  (A7) 

(3,E) = - i [(3, + e ) -  (8,- e)] (A8) 

In this basis we have 

~'= ~+ ~,+ (8,+ ~)+ . , - (8 , -  ~) (A9) 

where a, + = % + iv  i and a i = oa i - iv  i. Using (A5) and (A6) in (A2)-(A4) we 
arrive at the following set of commutation relations: 

( 8 ?  (8, + ~ ) ) - ( 8 ,  + (8, + ~))= -~ , ,+  (~,~) 

(8,- (sF ~))- (sj- (8,.-~)) = - ~,,(Sk-~) 

( 8 , - ( 8 ,  + ~ ) ) - ( 8 7  (8 , -~) )  = 0 

(AIO) 

(A l l )  

(A12) 

This basis corresponds to a direct product decomposition of S L ( 2 ,  C )  into 
two SU(2)-type subgroups but each with complex rather than real parame- 
ters. From Dalton (1980b) the two Casimir invariants are given by 

- ( 6 i  + (8,+ e)) = + J,(Jl  + l ) e  

- (a , -  (a , -  ~)) = k(J , -  + 1)~ 

(A13) 

(A14) 
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where Jl and Jz are numbers. The negative sign in the above two equations 
is included because as mentioned before we absorbed the usual factor of 
( - 1 )  1/2 into the expressions (Sie). Different realizations of SL(2, C) may 
be partially classified by giving the set of numbers (j~, J2). We emphasize 
however that knowing (Jl, ./'2) does not tell us whether or not the realization 
is linear or nonlinear. 
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